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Abstract. We introduce the concepts of information-theoretic entropy and

mutual information, emphasizing their common interpretations. We highlight
their role in some basic theorems of information theory, namely the asymp-

totic equipartition property and Shannon’s source coding and channel coding

theorems.

1. Introduction

Information theory is all about the quantification of information. It was devel-
oped by C. Shannon in an influential paper of 1948, in order to answer theoretical
questions in telecommunications.

Two central concepts in information theory are those of entropy and mutual in-
formation. The former can be interpreted in various ways and is related to concepts
with the same name in other fields, including statistical mechanics, topological dy-
namics and ergodic theory. In information theory, entropy is a measure of the
randomness of a discrete random variable. It can also be thought of as the uncer-
tainty about the outcome of an experiment, or the rate of information generation
by performing the experiment repeatedly.

Mutual information is the information that one random variable contains about
another random variable. It is defined in terms of entropy and conditional entropy.
The importance of both entropy and mutual information can be seen through their
appearance in several important theorems of information theory, although their
applications extend to other fields. Our goal here is to give a motivated introduction
of entropy and mutual information and to present some of the highlights of their
role in information theory. In particular, we discuss the Asymptotic Equipartition
Property, Shannon’s source coding theorem and Shannon’s channel coding theorem.
Most of our discussion is based on [1].

Sections 2-5 deal with entropy only. Section 2 serves as a motivation, while sec-
tion 3 introduces entropy and its basic properties. Section 4 is about the Asymptotic
Equipartition Property, while section 5 discusses the source coding problem. Condi-
tional entropy and mutual information are introduced in section 6. Some insightful
properties of mutual information are discussed in section 7, including a relation to
the concept of sufficient statistics. Section 8 discusses the channel coding problem,
while section 9 makes the connection between source and channel coding.
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2. Motivation: Measuring information

Consider the uniform distribution on the unit square and let A1, . . . , A5 be the
partition shown in Figure 1. Suppose you perform an experiment with this random
variable and you want to describe in which part of the square the random variable
took its value. If the event A1 occurs, then you can describe it by saying it is on the
right half of the square. Since there are only two halfs, this is one piece of binary
information; it is one bit of information.

Figure 1. Assuming uniform distribution, the probability of each
event is proportional to its area.

If the result is A2, then you need two bits of information: it is on the left, in
contrast to the right, and it is on the bottom half, in contrast to the top half. Sim-
ilarly, if you were to describe A4 in this way, you would need 4 bits of information.
Notice that as the sets get smaller, we need more bits to describe the event, but
the amount of precision we get is also higher.

In general, an event with probability 2−k requires k bits of information to be
described. Turning this around, an event with probability P (A) requires − logP (A)
bits to be described (in this text, all logarithms are base 2).

Motivated by this example, we define the self-information of the event A by

I(A) = − logP (A).

This function has two important properties. First, it is a decreasing function of
P (A); events with smaller probability contain more information. Second, if A and
B are independent, then

I(A ∩B) = I(A) + I(B).

In words, the self-information of the intersection of two independent events is the
sum of the self-informations.

3. Definition of entropy

We now restrict ourselves to random variables with finitely many possible values
(although many definitions can be extended to the countably infinite case).

Let X denote a random variable with values in the finite set X = {x1, . . . , xn}
and denote by pi the probability of the outcome xi. According to the above defini-
tion, the self-information of xi is − log pi. We define the entropy H of X by

H(X) := −
n∑
i=1

pi log pi.

(Here we use the convention that 0 · log 0 = 0.)
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Notice that H(X) is the expected value of the self-information. To make this
more precise, let AX denote the simple event in which X takes its value. That
is, AX = {xi} whenever X = xi. The quantity − logP (AX) is then a random
variable and H(X) is by definition its expectation. According to the above intuitive
approach to the self-information, the entropy describes the information we get on
average by performing an experiment and observing the value of X.

Here are some of the properties of entropy.

(1) H(X) ≥ 0, with equality if and only if X is deterministic, that is pi = 1
for some i.

(2) H(X) ≤ log |X |, with equality if and only if X is uniformly distributed.
(3) H((X,Y )) ≤ H(X) + H(Y ), with equality if and only if X and Y are

independent.

Remark 3.1. According to the second property, the entropy H(X) is maximized
when the distribution is uniform. In some sense, the uniform distribution has the
highest randomness; we cannot make any meaningful prediction about its outcome
before the experiment. On the other hand the entropy is zero when X is purely
deterministic. The above justifies thinking of H(X) as the randomness of X. Stated
in a different way, H(X) is the uncertainty we have about the outcome of X before
we observe it.

Remark 3.2. The above interpretation of entropy is also supported by the third
property: if X and Y are independent, the uncertainty about the vector (X,Y ) is
the sum of the uncertainties. Otherwise, the joint uncertainty is smaller, because
by observing X we get some information about Y . Notice that this is reminiscent
of the behavior of the variance for a sum of two random variables X + Y , but
here it is about the random vector (X,Y ). Another difference is that the relation
σ2
X+Y = σ2

X + σ2
Y holds if X and Y are merely uncorrelated, while H((X,Y )) =

H(X) +H(Y ) means that X and Y are independent.

4. The Asymptotic Equipartition Property

We now proceed to see a theorem where H(X) plays a central role. Suppose for
simplicity that X is a Bernoulli random variable, taking value 1 with probability
p and 0 otherwise. Its entropy is a number between 0 and 1. More precisely, it is
given by

H(X) = −p log p− (1− p) log(1− p).
Let X1, X2, . . . be a sequence of i.i.d. random variables, each with the same distri-
bution as X. For a fixed n, the random vector (X1, . . . , Xn) takes values that are
strings of 0’s and 1’s. The probability of such a string depends on the number of
1’s that it contains. More precisely if the string x1x2 . . . xn contains k ones, then

(4.1) P (x1x2 . . . xn) = pk · (1− p)n−k.
What does a typical string look like? Of course, each string has a non-zero proba-
bility of occurring, if 0 < p < 1. But as n gets large, can we say something about
the form of a string with high probability? It turns out that something can be said
about the number of 1’s and 0’s in a typical string and this is the content of the
Asymptotic Equipartition Property (AEP).

Notice that P (X1X2 . . . Xn) is itself a random variable: it is the probability of
the observed string. By Eq. 4.1, it is a function of the number of 1’s and it is a
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one-to-one function if p 6= 1
2 . We will state the theorem for an arbitrary random

variable with finitely many possible values, not necessarily Bernoulli. In this case,
P (X1X2 . . . Xn) is a function of the number of occurrences of each symbol.

Theorem 4.1 (Asymptotic Equipartition Property). If X,X1, X2, . . . are i.i.d.
random variables with finitely many possible values and P (X1X2 . . . Xn) denotes
the probability of the random string X1X2 . . . Xn, then

− 1

n
logP (X1X2 . . . Xn)→ H(X) a.s.

The proof of the above theorem is a direct application of the strong law of large
numbers to the independent random variables − logP (Xi). But its consequences
are striking. As already mentioned, P (X1X2 . . . Xn) is a function of the number
of occurrences of each symbol. The above theorem hence tells us something about
the asymptotic behavior of the constitution of the string or, in other words, how
many of each symbol appear as n gets large.

To get some more detailed results we define, for a given ε > 0, the typical set

A
(n)
ε as the set of strings x1x2 . . . xn such that

2−n(H(X)+ε) ≤ P (x1x2 . . . xn) ≤ 2−n(H(X)−ε),

Figure 2. There are 2n log |X | sequences of length n, but only
about 2nH(X) typical sequences.

Notice that the above inequalities are equivalent to

H(X)− ε ≤ − 1

n
logP (x1x2 . . . xn) ≤ H(X) + ε,

where the quantity in the middle is the one appearing in the Asymptotic Equiparti-
tion Property. The following theorem, which is a consequence of the AEP, justifies
the name “typical set” (see [1] for a proof).

Theorem 4.2.

(1) lim
n→∞

P
(
A

(n)
ε

)
= 1

(2)
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(H(X)+ε)

(3) lim
n→∞

∣∣∣A(n)
ε

∣∣∣ ≥ 2n(H(X)−ε)
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The first property states that the probability that a non-typical sequence will
occur goes to 0 for large n. The last two properties state that there are not too
many typical sequences; they are of order 2nH(X)±ε. This should be compared to
the total number of possible sequences 2n log |X | and recall that H(X) < log |X |,
unless X is uniformly distributed. That is, the number of typical sequences is
exponentially smaller than the total number of sequences.

The three properties combined say that the probability distribution is “concen-

trated” on this small set, of order roughly 2nH(X). By the definition of A
(n)
ε , each of

these typical sequences has roughly the same probability. All in all, the probability
distribution of the sequences of length n is roughly a uniform distribution on a set
with about 2nH(X) elements. Stated in another way, if you randomly generate a
sequence of length n from the random variable X, it is almost the same as uniformly
picking a sequence from the much smaller set of typical sequences. The size of this
set is determined by the entropy of X.

5. Source coding

In digital telecommunications, the following setup is typical: You have a random
source that at each instance produces symbols from a finite set and you want to
encode these symbols into binary strings, that is to assign a unique string of 0’s
and 1’s to each symbol, before you trasmit them digitally (see Figure 3 and Table
1). These strings are called codewords and the goal is to choose them in a way that
minimizes the expected number of bits you transmit.

Figure 3. The symbols produced by a source are encoded into
strings of 0’s and 1’s, before they are transmitted through a digital
medium.

Symbol Codeword
x1 1001
x2 01101
x3 101
. . . . . .
xN 0101

Table 1. To each symbol we assign a unique string of 0’s and 1’s.

The source is modelled by a random variable X that takes values in the finite
set X = {x1, . . . xN}. The problem of source coding consists of finding a one-to-one
function

f : X → {finite strings of 0’s and 1’s},
with some extra restrictions which we discuss promptly.
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Since we want to minimize the bits that we transmit, we would like to use
codewords of small length, starting with length 1. But assuming that we transmit
more than one codewords, one after the other, and the receiver of our message
wants to decode it, they must be able to identify where each codeword ends. So
the restriction we impose is that no codeword is the beginning of another codeword.
For example, if the string ‘11’ is used as a codeword, then ‘1101’ cannot be used.
The following example compares two ways to encode a source.

Example 5.1. Let X = {x1, x2, x3, x4} with probabilities

p1 =
1

2
, p2 =

1

4
and p3 = p4 =

1

8
.

A naive way to encode this source would be to use codewords of length 2, that is
‘00’, ‘01’, ‘10’ amd ‘11’. Then the expected length of a codeword is also 2.

But we could actually do better if we took advantage of the fact that x1 appears
much more often than the rest of the symbols. We therefore assign to x1 the shorter
codeword ‘1’. Now, no other codeword starting with ‘1’ can be used. Therefore,
we choose to use the codeword ‘01’ for x2. Since no other codeword can start with
either ‘1’ or ‘01’, we are forced to choose ‘000’ and ‘001’ for x3 and x4. Comparing
this to the previous case where each codeword had length 2, we notice that some
keywords now are shorter and some are longer. But what happens on average? If
we denote by l(xi) the length of the codeword for xi, we have

E[l(X)] =
1

2
l(x1) +

1

4
l(x2) +

1

8
l(x3) +

1

8
l(x4)

=
1

2
+

1

2
+

3

8
+

3

8
=

7

4
< 2.

We conclude that this way of encoding is more efficient.

A natural question to ask is how good can we do? In other words, what is
the shortest expected length that we could hope to achieve? It turns out that
a lower bound for the expected length of a source is the entropy H(X). In the
above example, this bound is actually achieved by the second coding scheme, since
H(X) = 7

4 . But can it always be achieved?
The simple answer is no, but the reason is the discrete nature of the length of

a keyword. Ideally, we would like to assign a codeword of length − log pi to the
symbol xi. In the above example, this worked well, because − log pi was an integer
for each i. In general this will not be the case and the remedy will be to use
d− log pie number of bits, where dre denotes the smallest integer at least as big as
r. This would increase the average length by at most 1 bit. This is captured in the
following proposition.

Theorem 5.2. Let X be a random source and suppose that L is the minimum
average codeword length over all possible codes. Then

H(X) ≤ L < H(X) + 1.

If L > H(X) and we are not satisfied with the difference L − H(X), we can
improve our average length by combining symbols. That is, if we want to transmit
a large number of symbols from the set X , we can group them into n-tuples, thus
effectively using Y = (X1, . . . , Xn) as our new random variable and Y = Xn as our
new set of symbols (see Table 2).
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Symbol pair Codeword
x1x1 1001
x1x2 01101
. . . . . .
x1xN 11011
x2x1 0001
x2x2 101
. . . . . .

xNxN 001

Table 2. Instead of assigning codewords to single symbols, we
combine symbols into blocks of length n. Here n = 2.

The entropy of the vector Y = (X1, . . . , Xn) is nH(X), since X1, . . . , Xn are
independent. By the above theorem, the minimum expected length of a codeword
for Y is between nH(X) and nH(X) + 1. Therefore, the minimum expected length
per symbol of X will be in the range

[
H(X), H(X) + 1

n

)
. We have therefore proved

the following theorem.

Theorem 5.3. Let X be a random source and suppose that in the source cod-
ing problem we combine symbols into blocks of length n. If Ln is the per symbol
minimum average codeword length, then

H(X) ≤ Ln < H(X) +
1

n
.

As a corollary we get Shannon’s source coding theorem ([3]).

Corollary 5.4 (Shannon’s source coding theorem). For any ε > 0, there exists a
code with per symbol average codeword length L < H(X)+ε, provided that we allow
for arbitrarily large block length. No code exists with L < H(X).

The source coding theorem states that H(X) is not only a lower bound, but
also an asymptotic upper bound for the average number of bits per symbol that
are needed to encode a long message from X. This suggests the interpretation of
H(X) as the rate of information generation of the source X ([3]).

Another way to view H(X) is as follows: while X can produce |X | different
symbols, the number of bits needed to encode it is H(X), same as a source with
only 2H(X) symbols. That is, the “effective” number of symbols of X is 2H(X).

6. Conditional Entropy and Mutual Information

Given two random variables X and Y , taking values in the finite sets X =
{x1, . . . , xn} and Y = {y1, . . . , ym}, respectively, the joint entropy of X and Y is
defined as the entropy of the vector (X,Y ). That is, if pij = P (X = xi, Y = yj),
then

H(X,Y ) = −
∑
i,j

pij log pij .

In dealing with two random variables, it is useful to introduce the notation

pX,Y (x, y) := P (X = x, Y = y)
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for the joint probability of X and Y and

pX(x) := P (X = x)

=
∑
y∈Y

P (X = x, Y = y)

for the marginal probability of X, and similarly for Y .
The a posteriori probability pX|Y (x|y) is defined to be the conditional probability

of X = x, given that Y = y, that is

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
.

(Here we use the convention 0
0 = 0.)

Intuitively, if we know that Y = y, then the distribution of X “changes” from
pX(·) to pX|Y (·|y). We denote by H(X|Y = y) the entropy of the new distribution
of X, that is

H(X|Y = y) = −
n∑
i=1

pX|Y (x|y) · log pX|Y (x|y).

This can be thought of as the entropy of X knowing that Y = y.
The conditional entropy of X given Y , denoted by H(X|Y ), is the expectation

of the above quantity (which depends only on y). That is (with a slight abuse of
notation),

H(X|Y ) := EH(X|Y )

=
∑
y∈Y

pY (y) ·H(X|Y = y)

= −
∑
y∈Y

∑
x∈X

pY (y) · pX|Y (x|y) · log pX|Y (x|y)

= −
∑
y∈Y

∑
x∈X

pX,Y (x, y) · log pX|Y (x|y)

We can interpret this as the expected new entropy of X, after we observe Y .
There is a more direct, but perhaps less intuitive way to define the conditional

entropy. Recall that AX denotes the simple event in which X takes its value, that
is AX = {x} when X = x. Then

H(X|Y ) = E [− logP (AX |Y )] ,

which can be compared to H(X) = E [− logP (AX)].
Conditional entropy satisfies the following very intuitive properties (see [1]).

(1) H(X|Y ) ≤ H(X) with equality if and only if X,Y are independent.
(2) H(X|Y ) ≥ 0, with equality if and only if X is completely determined by Y

(that is, X = f(Y ) a.s., for some function f : X → Y).
(3) H(X,Y ) = H(Y ) +H(X|Y )

By recalling our interpretation of entropy as the uncertainty about the outcome
of an experiment, the first property says that the uncertainty we have about X
cannot increase (on average) by observing Y . This justifies thinking of H(X|Y ) as
the remaining uncertainty of X, after observing Y . The second property says that
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the remaining uncertainty cannot be negative, but it is zero if by observing Y we
have all the information about X.

The third property says that the uncertainty about the joint outcome of X and
Y can be broken into the uncertainty about Y plus the remaining uncertainty of
X after observing Y .

By the symmetry of H(X,Y ), the second property implies the relation

(6.1) H(Y ) +H(X|Y ) = H(X) +H(Y |X).

From here it is clear that in general H(X|Y ) 6= H(Y |X).
Consistent with the interpretation of H(X) and H(X|Y ) as the uncertainty

of X before and after observing Y , respectively, we can think of the difference
H(X)−H(X|Y ) as the information we gain about X by observing Y . Notice that
by Eq. 6.1 we have the symmetry relation H(X) − H(X|Y ) = H(Y ) − H(Y |X),
which motivates calling this quantity the mutual information of X and Y . We
denote this by I(X;Y ), that is

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X).

From the properties of entropy and conditional entropy, it is easy to derive the
following:

(1) I(X;Y ) ≥ 0, with equality if and only if X and Y are independent.
(2) I(X;Y ) ≤ min{H(X), H(Y )} with equality if and only if X is completely

determined by Y or vice versa.

The above imply that I(X,Y ) is a measure of the non-independence of X and
Y or, in other words, a measure of the extent to which one of them determines the
other. This observation will be further explored in the next section.

7. Data-processing inequality and sufficient statistics

If I(X,Y ) is the information we extract about X by observing Y , then one would
expect that we cannot increase this information by simply transforming Y . That is,
if Z = f(Y ), where f is a deterministic function, we expect that I(X,Z) ≤ I(X,Y ).
This is indeed true and it is a special case of the next theorem.

We say that X and Z are conditionally independent given Y if for all x, y, z,

pX,Z|Y (x, z|y) = pX|Y (x|y) · pZ|Y (z|y).

Multiplying both sides by p(y) we get pX,Y,Z(x, y, z) = pX,Y (x, y) ·pZ|Y (z|y), hence
conditional independence of X and Z given Y is equivalent to the sequence X,Y, Z
being a Markov chain in this order.

The above is also equivalent to say that Z = f(Y, θ), where θ is a random
variable independent of X, uniformly distributed in [0, 1] (see Theorem 6.13 in
[2]). In particular, it includes the case Z = f(Y ) considered above. We have the
following theorem (Theorem 2.8.1 in [1]):

Theorem 7.1. If X and Z are conditionally independent given Y , then I(X,Z) ≤
I(X,Y ).

This theorem is sometimes stated as follows: We cannot improve the inferences
that can be made from the data by manipulating the data ([1]).

But what about retaining the inferences that can be made, while reducing the
data? Recall that a sufficient statistic for the family of distributions {pX|Y (·|x)}x
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is a statistic g(Y ) such that P (Y = y|g(Y ) = t,X = x) = P (Y = y|g(Y ) = t)
for all x, y, t (in general X doesn’t need to be a random variable, but merely a
parameter). The following theorem states that sufficiency is exactly what is needed
for a statistic to preserve the information ([1], section 2.9).

Theorem 7.2. Let g(Y ) be a statistic of Y . We have

I(X,Y ) = I(X, g(Y ))

if and only if g(Y ) is sufficient for the family of distributions {pY (·|X = x)}x for
any distribution on X.

8. Channel coding

We now turn to another basic theorem of information theory: the channel coding
theorem. The context of the problem is the following: We want to transmit an array
of symbols through a noisy communication channel. That is, we send a symbol from
one end of the channel and we receive a noisy version of the symbol at the other end
of the channel. The goal is to infer what symbol was sent by observing the received
symbol only. Here we focus on discrete channels, that is channels for which there
is a finite number of possible symbols both at the sender and the receiver end.

The setup is shown in Fig. 4. The main component is a communication channel,
which consists of an input alphabet X , an output alphabet Y and a collection {P x}x
of distributions on Y, one for each element x ∈ X . The central idea here is that
for each input x ∈ X , we don’t get a deterministic output y ∈ Y, but a probability
distribution on Y, which can be thought of as the result of noise.

Figure 4. The channel coding problem.

The sender wants to transmit an element from the input alphabet, which we
denote by x. Once it is inserted into the channel, another element y ∈ Y comes
out at the other end of the channel. This output is random, with distribution P x.
Then a decoder takes y and maps it into an element x̂, which ideally is the same
as x. The problem for the decoder is that different x’s might produce the same y,
so there is no way to know with certainty how to decode each y. The decision has
to be made purely on probabilistic terms, so that to minimize the chance of error.
We assume that the probability distributions P x are known. If the distribution of
the input X is also agreed upon, then the optimal decoder is clearly a Bayesian
one. The channel coding problem roughly amounts to choosing the distribution of
the input, so that the probability of error is small, while maximizing the rate of
information transfer (to be defined).

For example, consider the noisy binary channel of Fig. 5. Here the sender inputs
either 0 or 1 and the receiver observes the correct symbol with probability 1 − ε.
Assuming that ε is small, then the receiver will decode a 0 as a 0 and a 1 as a 1.
This way the probability of error is ε, independently of the input.

Sometimes using fewer symbols from the input alphabet might allow the receiver
to decode the output with certainty. Consider for example the channel of Fig. 6. If
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Figure 5. The noisy binary channel. For each bit sent, there is
1− ε probability that it will be transmitted correctly.

all four symbols are into play, then the receiver won’t be able to decode the output
with certainty. But if the sender and the receiver agree that only a and c are used
from the input alphabet, then decoding is possible: a or b means a, while c or d
means c. Therefore, by reducing the available symbols to half, we have achieved
perfect decodability. Look at the price we had to pay, though: now the sender can
use only two symbols to communicate a message to the receiver, which means that
the messages will become longer.

Figure 6. For each symbol sent, the symbol received is either the
same or the next one, with probability 1/2 each.

The above trick does not always work, as in the noisy binary channel of Fig.
5 (of course it doesn’t make sense to have only one possible symbol). Is there
something we can do here? As one might expect, there is no way to achieve perfect
decodability using such a channel. But one might hope to reduce the probability of
error by using the channel repeatedly. For example, suppose that in the case of the
noisy binary channel the sender and receiver agree that the sender will repeat each
symbol k times. Due to noise, sometimes the receiver will see the wrong symbol,
but if ε is small, it is very unlikely that the wrong symbol will appear more than half
of the times. Therefore, the receiver can decode based on which symbol appeared
most of the times, hoping that this is the actual symbol sent. By the law of large
numbers, the probability of error will tend to 0 as k increases. The trade-off is that
the rate of transmission becomes smaller. Instead of sending one novel symbol per
use of the channel, we are transmitting one symbol per k uses, hence reducing the
rate of information transfer k-fold.
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Although we still haven’t given a precise definition of the rate, in the above
example it is clear that in order to get an arbitrarily low probability of error, the
rate will also become arbitrarily small. What we would like would be to achieve
an arbitrarily small error with a constant, non-zero rate. It turns out that this
is possible, under one assumption: the message that we want to transmit is big
enough, so that we can combine symbols into blocks, like we did in the problem of
source coding. This is the content of the channel coding theorem. But before we
state it we need some definitions.

A discrete channel is a triplet (X ,Y, {P x}x), where X and Y are two finite
sets and P x is a probability distribution on Y for each x ∈ X . The distribution P x

can be thought of as the conditional distribution of the output, when the input is
x.

More precisely, if we consider the input X as a random variable taking values
in X , then the output also turns into a random variable Y . The joint distribution
PX,Y of (X,Y ) is induced by the distribution PX of the input and the channel
distributions P x as follows:

(8.1) PX,Y (x, y) = PX(x) · P x(y).

The fact that P x(y) behaves like a conditional distribution is seen by comparing
the above equation to PX,Y (x, y) = PX(x) · PY |X(y|x). The fine distinction here is
that by looking at the channel only, we don’t have any “joint distribution”; in fact,
the definition of the channel does not even treat the input X as a random variable.
But once we choose a distribution for X and turn it into a random variable, we
immediately get a joint distribution PX,Y .

This allows one to choose the distribution for X in an optimal way, so that
to facilitate the communication. Since our goal is to infer X by observing Y , we
might want to choose the distribution so that their mutual information (which is
determined by the joint distribution) is maximized. Indeed, we will see that the
ultimate quality of the channel is determined by max

PX

I(X,Y ), where PX ranges

over all possible distributions on X.
The k-th extension of the channel (X ,Y, {P x}x) is the channel with input alpha-

bet X k, output alphabet Yk, and P xi1
,...,xik equal to the product of the distributions

P xi1 , . . . , P xik . Intuitively, this corresponds to treating k subsequent uses of the
channel as one, since the input is an element in X k and the output is an element
in Yk. We note that the use of the product distribution implies that each output
symbol depends only on the respective input symbol and not on the past (or future)
ones. In other words, we are considering a memoryless channel.

An (M,k) code for the channel (X ,Y, {P x}x) is a way to choose M elements
in the set X k, together with a rule to decide which one was sent by observing the
output only. More precisely, an (M,k) code consists of the following:

• A subset A ⊂ X k of cardinality |A| = M .
• A decoding function g : Yk → A.

The set A is the subset of X k that we will be actually using. This is the same
idea as in the channel of Fig. 6, where we used only 2 out of the 4 symbols of
X . Consistent with the convention that 2n symbols carry n bits of information, we
define the rate of an (M,k) code to be logM

k , measured in bits per channel use.
For each x ∈ A, the probability of error is

λx = P x (g(Y ) 6= x) .
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In other words, given that the input is x, we consider the (conditional) distribution
P x of the output variable Y and we look at the probability that this output will
be decoded wrongly, that is g (Y ) 6= x.

The maximal probability of error is λ = max
x∈A

λx.

We say that R is an achievable rate for the channel (X ,Y, {P x}x) if for any
ε > 0, there exists an (M,k) code with rate at least R (that is, logM ≥ kR) and
maximal probability of error λ < ε. The capacity of a channel is the supremum of
all achievable rates.

We are now ready to state the channel coding theorem (Theorem 7.7.1 in [1]):

Theorem 8.1 (Shannon’s channel coding theorem). Let (X ,Y, {P x}x) be a discrete
memoryless channel. Then, its capacity is equal to max

PX

I(X,Y ), where PX ranges

over all possible distributions on X and (X,Y ) has the induced joint distribution
given by 8.1.

The importance of the above theorem lies in the fact that it relates a purely
communicational measure (the maximum rate of information transfer) to a purely
probabilistic one (the maximum mutual information).

9. Independence of source and channel coding

Let’s now look at how the two communications problems that we have considered,
namely the source coding and the channel coding, relate to each other.

In the source coding problem, we have a source of symbols with a given distribu-
tion and we want to encode these symbols so that the average length is minimized.
The channel problem picks up at this point and considers the encoded sequence as
the message that needs to be transmitted. Once the message is recovered at the
other end of the channel, it is then translated back into the original message, by
inverting the source coding procedure. This is summarized in Fig. 7. Notice that
there is a two-step decoding process at the receiver end: one that inverts the effect
of the channel and one that inverts the effect of the source coding.

Figure 7. The combined source-channel coding problem.

Note that although in the source coding problem we were assuming that the
symbols are mapped into binary words, everything would work the same if we used
M -ary words. In fact, if the channel is using an (M,k)-code, then we are forced to
use M -ary source coding, if we want to avoid an intermediate step (not shown here).
On the other hand, the probability distribution of the M -ary digits produced by
the source coding is irrelevant to the channel coding problem, since in the definition
of the achievable rates for the channel we are looking at the maximal probability
of error.

This implies that the two problems are considered independently. Indeed, the
channel coding process sees only an M -ary string that has to be transmitted; it
doesn’t know how it was produced (hence makes no assumption on the probability
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distribution of the input). Similarly, the source coding process is interested in min-
imizing the total length of the message, without caring how it will be transmitted.

It is reasonable then to ask if we could achieve a better result on the composite
problem by merging the processes of source and channel coding. That is, we might
want to map the symbols of the source into M -ary words, with an eye towards the
way that they will be transmitted through the channel. This might lead us to a
suboptimal solution for the source coding problem, but it might allow for a better
result in the channel coding problem. Then one might hope that in total we will
get a better result.

If the average length of a codeword produced by the source coding is L (bits
per symbol), while the rate of the channel code is R (bits per channel use), then
in total we are transmitting R

L symbols per channel use. Recall that the capacity
C of the channel is the supremum of the achievable rates and the entropy H(Z)
of the source Z is the infimum of the average codeword length in source coding.
That is, by considering the two problems independently we are able to achieve
(asymptotically) a rate of C

H(Z) symbols per channel use. The next theorem states

that no improvement can be made by combining the two problems (Theorem 7.13.1
in [1]).

Theorem 9.1. Let Z be a random source of symbols taking values in Z and let
(X ,Y, {P x}x) be a discrete memoryless channel. Suppose that for each ε > 0 there
exists a function f : Z l → X k that maps blocks of symbols produced by Z directly
into the alphabet of the k-th extension of the channel, with l

k ≥ R , and a decoding

function g : Yk → Z l, such that the maximal probability of error λ = max
x∈f(Zl)

λx is

less than ε. Then, R ≤ C
H(Z) , where C is the capacity of the channel and H(Z) the

entropy of the source.

The function f in the above theorem combines the source encoding with choosing
a code for the channel. Notice that it is transmitting l

k symbols per channel use.

The theorem states that it is impossible to transmit more than C
H(Z) symbols per

channel use with arbitrarily low probability of error, same as if we treated the two
problems separately.

10. Summary

We have introduced entropy for a random variable X with finitely many pos-
sible values and interpreted it in various ways. Initially entropy was defined as
the expectation of the self-information of the simple events {xi}, which in a cer-
tain setting was the number of bits of information needed to describe {xi}. Since
0 ≤ H(X) ≤ logN , with the bounds attained by the degenerate and uniform dis-
tribution, respectively, the entropy can be thought of as the randomness of X. In
the setting of the asymptotic equipartition property, we saw that the distribution

of (X1, . . . , Xn) was approximately a uniform distribution on a set A
(n)
ε , the size of

which was 2nH(X). Finally, in the setting of source coding, H(X) was the rate of
information generation of the source X, measured in bits per symbol. Viewed in
another way, it was the logarithm of the “effective” number of possible values of X.

The conditional entropy H(X|Y ) is the remaining entropy of X, after observing
Y . The reduction in the entropy of X as a result of observing Y is the mutual
information of X and Y . We saw that simply transforming Y cannot increase
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the mutual information, but it can preserve it, if the transformation is a sufficient
statistic of Y for the parameter X. Next we discussed the channel coding problem
and we saw that the mutual information between the input and output of the
channel is what determines its capacity for (almost) error-free transmission. Finally,
we saw that the problems of source and channel coding can be treated separately,
without loss of efficiency relative to the combined treatment.
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