
What are the real numbers?

Part I: A journey from the intuitive notion to a proper definition

Alexandros Gelastopoulos

Four fundamental sets of numbers that we learn about in school are the sets N, Z, Q,
and R. The first one is the set of positive whole numbers, also called the naturals, i.e.
N = {1, 2, 3, . . .}. The second set, called the integers, contains all whole numbers, both
positive and negative, as well as 0, that is Z = {. . . ,−2,−1, 0, 1, 2, . . .}. The third one,
Q, is the set of all rational numbers, i.e. fractions of the form m/n where m and n are
integers and n is non-zero. But what about R? We know this as the set of real numbers,
but how do you describe those numbers? The way we usually think of the reals is as
points on a line, the “real number line”. This line contains all the rationals, but it also
contains other numbers, called irrationals. But who are those other numbers? Sure, one
can give examples, like

√
2, the number π, or Euler’s constant e. But what about the

rest? How many are there?
You will probably agree with me that defining the real numbers as “all those numbers

on a line” is kind of an obscure definition; it is much less satisfactory than, for example,
the definition of the rationals, which are described as fractions of integers. Can we
construct the real numbers in a way similar to the way the rationals are constructed from
the integers? This is the main topic of this article. But as someone familiar with the
poem Ithaka1 will know, it’s the journey that matters, not the destination. So our real
goal is to enjoy the journey and learn a lot on the way, with the definition of the reals
serving as our destination.

Understanding our destination: Q vs R
Let us first take a step back and think about what we know of the real numbers. Specifi-
cally, let us compare the reals with the rationals and see what they have in common and
what not.

To begin with, in both of these sets of numbers we can perform the usual arithmetic
operations (+, −, ·, /) and the result is a number of the same kind, e.g. when you add,
subtract, multiply, or divide two rational numbers, you get a rational, and the same is
true for the reals. This is not true for the naturals or the integers, by the way, because
division might give you a number that is not a whole number. The mathematical term
used for such a set, in which you can perform all four arithmetic operations with the
standard properties that we know from school, is a number field, or simply a field. Q and
R are thus both fields.

1Ithaka is a Greek poem written in 1911 by Constantine Cavafy. It makes reference to Ulysse’s
adventurous journey back home after the Trojan war, which is the topic of the much older poem Odyssey.
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Figure 1: No matter how much we zoom in on the real line, we will always find rationals,
and in fact infinitely many of them.

A second property that Q and R share is that they have an order relation (“>”)
defined on them that can tell us for any two elements in these sets which one is larger.
This is unlike the complex numbers C, for example, which do not come with a natural
relation of this kind. Such order relations, when they satisfy the standard properties that
we are familiar with (e.g., “if a > b and b > c, then a > c”), are called total orders,2

hence Q and R are both totally ordered sets.
Another property that Q and R have in common is that, when we put them on a line,

they cover the line densely, in the sense that no matter how close you look, there are
infinitely many of them (see fig. 1). Given our understanding of R as “all numbers on a
line”, this is not saying anything new. But regarding Q, it is a property worth noting:
there are infinitely many rationals and, in addition to that, no matter how much you
zoom in on the line, you will still find infinitely many of them; there are no “gaps”, in
the sense that there is no interval (segment) that is free of rationals. This is not true for
the naturals N or integers Z.

Think: Does the set of all fractions of integers whose denominators are powers of
10 (e.g. numbers like 7/10, −3/100, 173/10, −35/1, 1831213/10000, etc.) cover densely
the real line? Is this set the same as Q or is it a smaller set? (In other words, are there
rational numbers that cannot be written this way?)

Leaving point gaps

But here is one difference between Q and R: while Q leaves no interval gaps, it does
leave point gaps. For example, there is no rational at the point

√
2 (see the Appendix for

a proof). Does R leave gaps? Given our understanding of R as the set of all points on a
line, it shouldn’t leave gaps by definition. But as already pointed out, this definition is
not satisfactory. We hope that when we give a proper definition of the reals we can show
that it doesn’t leave gaps.

Why is this important? Does it really matter whether a set of numbers “leaves gaps”

2The specification total here means that for any two (distinct) elements, one will be larger than the
other. In contrast, the relation A ⊂ B that compares two sets is a partial order, because sometimes
neither A ⊂ B nor B ⊂ A is true.
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Figure 2: The Intermediate Value Theorem states that if a continuous function defined
on an interval [x1, x2] ⊂ R takes the values a = f(x1) and b = f(x2) at the endpoints,
then it must also take every value d between a and b at some x′ ∈ (x1, x2). In other
words, the graph of the function must meet exactly the horizontal line y = d (it cannot
“skip” values). This theorem depends on the properties of the real numbers; it does not
hold if f is defined on the rationals.

or not? It turns out that it does. Several fundamental theorems of calculus depend
on this. It’s likely that you are already familiar with some of these theorems, like the
Intermediate Value Theorem, which says that if a continuous function f defined on the
real numbers attains two values a and b (i.e. f(x1) = a for some x1 and f(x2) = b
for some x2), then it also attains every intermediate value between a and b, at some x
between x1 and x2. See fig. 2. Is this true if f is defined on the rationals? No, take for
example the function with formula f(x) = x2 − 2. We have f(0) = −2 and f(2) = 2,
but there is no rational number x such that f(x) = 0. The intermediate value theorem
is thus not satisfied if we work with functions defined on the rationals, exactly because
Q leaves gaps that allow the function to “skip” some values.3

Planning our route: Why not decimal expansions?

One may try to define the real numbers by way of decimal expansions, i.e. by saying
that the real numbers are all whole or decimal numbers, including those with infinite
decimal places, whether the decimal digits repeat or not.4 But how do we know that
these are “all” the numbers? In other words, how do we know that if we put all those
numbers on a line, they don’t leave gaps like the rationals do? Perhaps you are inclined
to believe that there can’t be any other numbers, because the decimal expansions provide
arbitrary precision. But this is also true for the rationals, as explained above, hence it is

3Another example of a theorem that depends on R not leaving gaps is the extreme value theorem,
which says that every continuous function defined on a closed interval [a, b] attains a maximum as well
as a minimum value. This is again not true if the function is defined only on rational points in [a, b].

4Recall that the rationals are those whole or decimal numbers that either have a finite number of
decimal places or their decimal digits repeat indefinitely after some point.
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not enough to guarantee that there can’t be any other numbers.
The above discussion raises the question: How can we ever be sure that there are no

other numbers? What does it even mean that there are gaps left, unless we have already
defined more numbers? The fact that the intermediate value theorem can be proven for
functions defined on the reals but fails if we restrict ourselves to the rationals shows that
this is not just a philosophical discussion. Below we will make precise what we mean by
“leaves gaps”, and then we’ll give a definition of the reals that provably doesn’t leave
gaps. Although it is possible to do this through decimal expansions, it is a route that
we are not going to take. Instead, we will follow a different route, one that will take us
through more interesting places and that will teach us more. Remember that the goal is
not just to reach the destination, but also to enjoy the journey and become a little bit
wiser.

Choosing our ship: Geometric intuition vs Set-theoretic defini-
tions

In mathematics we often use geometric thinking to get intuition. This is especially true in
the field of mathematics that studies the properties of real numbers (which is part of the
field of real analysis). However, intuitive understanding isn’t enough when we want to be
precise. After all, one’s intuitive understanding might be different from that of someone
else. Just to give an example, consider the question of what the length of a point is.
Some people will say that it has zero length, while others might raise an objection and
argue as follows: a line segment is made up of points and it has non-zero length; how can
something of non-zero length be the result of putting together things of zero length?

Today mathematicians agree that, although geometric thinking can be very useful
in understanding certain concepts, our definitions and arguments must not make any
reference to geometric intuition. Instead, they must be expressed in the language of set
theory (and logic). This means expressions like “x is an element of the set S” (x ∈ S), or
“for each element y in the set S...” (∀y ∈ S), and so on. Anything that does not already
have a well-defined meaning must be properly defined (in this language) before we can
use it.

When we said above that Q “leaves gaps”, we were invoking our geometric intuition.
We’d like to have a proper definition of what it means for a set to “leave gaps”, using
the language of sets. This will be the bulk of our journey. However, before going into the
open sea, let us first make a practice expedition to get to know our boat.

A practice expedition: Expressing properties in set theory lan-
guage

To illustrate how one can turn an intuitive notion into a rigorous definition, we will use
an example that will also turn out to be very relevant later on, so this is training that is
bound to prove useful. Consider the following question: what is the difference between
closed intervals, i.e. intervals of the form [a, b], and half-open intervals of the form [a, b)?
Geometrically, intervals of the first type contain their right endpoint, while intervals of
the second type don’t. How can we express this without making any reference to the
geometry we associate with these intervals (i.e. as parts of the real line)? Can we define
it without using terms like “the right endpoint”?
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It turns out that it is not hard to do so, once we observe that, apart from being
segments of the real line, these intervals are sets with an order relation (“>”) and, in the
case of [a, b], the right endpoint b turns out to be its largest element. What is the largest
element of [a, b)? There is none; no matter how close to b we choose a number, there is
always a larger number contained in the interval. We are not allowed to choose b itself,
because it is not a member of the set. As a result, no element of [a, b) has the property
that it is larger than all other elements.

We have thus found a property that distinguishes between the two types of intervals:
the first has a largest element, while the second doesn’t. Is the property “has a largest
element” a precise statement? Yes, as the following definition, expressed in the language
of set theory, shows:

Definition 1. A totally ordered set S has a largest element if there exists some x ∈ S,
such that x ≥ y for all y ∈ S.5

This definition makes precise what we mean by “contains a largest element”. In
particular, it makes no reference to intuitive/geometric notions. It does make reference
to an order relation (“≥”) and this is the reason that we require S to be a totally ordered
set. Total orders are things that can be defined in the language of sets, but we are not
going to do this here. One doesn’t want to get lost venturing forever in side quests; it is
an expedition best left for another day.

Now that we are equipped with the above definition, we may say that a property that
distinguishes a set of the form [a, b] from a set of the form [a, b) is that the former has a
largest element while the latter doesn’t.

Think: Does the set of numbers {0, 0.9, 0.99, 0.999, . . .} have a largest element? Does
the set of natural numbers N have a largest element? Does a finite subset of R (i.e. one
containing finitely many elements) always have a largest element?

In the open sea: Defining “leaves gaps” in the language of sets

Now that we have already seen an example of how to turn a geometric property into a
statement in the language of sets, we’d like to do the same with the main property that
distinguishes the rationals from the real numbers, i.e. the fact that Q leaves (point) gaps
on the line. How can we express this in terms of sets and order relations?

If we had defined R and identified it with the real line, our job would have been easy:
Q leaves gaps simply means that there are elements of R that do not belong to Q. But
remember that we haven’t defined R yet,6 so our task will be to express the property “Q
leaves gaps”, in a precise way, without making reference to a larger set. Our first stop
will be the notion of cuts.

Cuts in Q

Suppose that we want to split the rationals into two sets, one that includes all those
numbers that are smaller than 1 and those that are larger than 1. We would have to
decide where 1 would go; let’s say it goes with the larger ones. We therefore have the

5We write “≥” instead of “>”, i.e. we allow x to be equal to y, because they might happen to be the
same element.

6And we will in fact need the concepts that we develop here in order to define R, so we can’t just
postpone this problem until after we have defined it.
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Figure 3: A cut in Q. The sets A and B only contain rational numbers. They are disjoint
and taken together they make up Q.

sets A = {x ∈ Q : x < 1} and B = {x ∈ Q : x ≥ 1}. See fig. 3. This pair of sets has the
following properties:

(i) A and B are both non-empty.

(ii) A ∩B = ∅ (A and B have no elements in common).

(iii) A ∪B = Q (Together A and B make up all of Q).

(iv) Every element of A is smaller than every element of B.

(v) A has no largest element.

Such a pair of sets will be called a cut (because it’s as if we “cut” the number line at
a certain point, e.g. at 1) and will be written as A|B. As you may imagine, we can get
different cuts by “‘cutting” at different points, i.e. by substituting the number 1 in the
definition of A and B by something else. In fact, any rational number q provides a cut if
we define A = {x ∈ Q : x < q} and B = {x ∈ Q : x ≥ q}. But are all cuts obtained this
way or are there more cuts than rational numbers?

Think: In order to better understand a definition, it is often useful to think how its
essence would change if we modified some part of it. For example, what is the importance
of property (iv) above? To answer this, do the following exercise: Find a way to split
the rationals into two sets such that properties (i), (ii), (iii), and (v) are satisfied, but
property (iv) is not.

No smallest element for B

Note that by definition of a cut, it is the first set, A, that must have no largest element.
We will stick to this convention. Regarding the set B, there is no requirement of either
having or not having a smallest element. But is it possible that (in addition to A having
no largest element) B has no smallest element? Can you find such a cut? Remember that
the rest of the properties in the definition of a cut must also be satisfied (don’t forget
property (iii)!).

If you answered that it is impossible, you gave up too fast. Consider the following cut
C|D in Q: C contains all negative rationals and all those rationals whose square is less
than 2. D contains all other positive rationals. Written with symbols, we have

C = {x ∈ Q : x < 0 or x2 < 2}
D = all the rest of Q.

(1)

What are the elements in D? By definition they are all positive rational numbers
whose square is at least 2. But given that there is no rational whose square is exactly 2,
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Figure 4: C|D is a cut in Q. C contains all negative rationals and all those rationals
whose square is less than 2. D contains all positive rationals whose square is larger than
2. Since there is no rational whose square is equal to 2, C and D together make up all of
Q.

we may as well say that D contains only those positive rationals whose square is larger
than 2, i.e. D = {x ∈ Q : x > 0 and x2 > 2}. See fig. 4.

Is C|D a cut in Q? Yes, it is easy to check that it satisfies the five necessary properties
mentioned above: (i) C and D are non-empty ii) they are disjoint (have no elements in
common), (iii) together they form all of Q, (iv) every element of C is smaller than every
element of D, and (v) C contains no largest element. But this time, in addition to C
having no largest element, D doesn’t have a smallest element. How is this possible?
Exactly because Q leaves point gaps! If it didn’t, then wherever we chose to “cut” the
line, there would be a number. Since that number can’t go into the set C (because C
can’t have a largest element), it would have to go into D and be its smallest element.
But because Q leaves gaps on the line, it is possible to cut at a point where there is no
(rational) number and thus D has no smallest element.

Concluding

We have just found a property, expressed in the language of sets, which is satisfied only
by those sets that we intuitively understand as “leaving gaps”. This can thus serve as
our definition. It does not apply only to rationals, but we can express it for any totally
ordered set.

Definition 2. A totally ordered set S leaves gaps if it is possible to find two sets
A,B ⊂ S, such that they form a cut in S, and moreover B has no smallest element.

Of course, by “a cut in S” we mean the same as a cut in Q, but now A,B are subsets
of S and when taken together they must give S (i.e. A ∪B = S) instead of Q.

Think: Why do we have to restrict the definition to totally ordered sets? Which
parts of the definition make use of the order relation?

Seagulls in the sky

We have come all the way across the ocean, so we must be closing in on our destination.
Let us look around and see whether there are any hints.

Real numbers as cuts in Q

Intuitively, the cut C|D where

C = {x ∈ Q : x < 0 or x2 < 2}, D = all the rest of Q
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represents the number
√
2, while the cut A|B with

A = {x ∈ Q : x < 1}, B = all the rest of Q

represents the number 1. One should be able to do the same with any point on the line,
i.e. every real number. We already saw that this is the case with every rational number
q: just define the cut Aq|Bq where Aq = {x ∈ Q : x < q} and Bq = all the rest of Q.
This cut represents q.

Can we do the same with irrational numbers? As already mentioned, intuitively it
should be possible to cut the line at any real number. However, we cannot just write
A = {x ∈ Q : x < r}, if r is not a rational number. Why? Because we don’t know what
r is yet, so how can we compare x to r? This is why in constructing the cut C|D above,
we wrote x2 < 2 in the definition of C, rather than x <

√
2. The expression x2 < 2 is

perfectly valid in the realm or rational numbers.
Let’s reflect a bit more on the cut C|D above. What we did with this cut is that

we created something that has the “feeling” of the number
√
2, which is an irrational

number, using only expressions that involved rationals. Perhaps this is the way to go
if we want to “construct” the real numbers from stuff that we already know: we could
define

√
2 to be the cut C|D constructed above. It looks like there is land on the horizon!

How can we generalize this to other irrational numbers? We can certainly do some-
thing similar with other radicals, e.g. 3

√
5 can be represented by the cut with A-part

{x ∈ Q : x3 < 5}.7 A similar approach also applies to logarithms, e.g. log10 3 can be
represented by the cut with A-part {x ∈ Q : 10x < 3}. With a little more work we can
represent many other irrational numbers, including π and Euler’s constant e. But we will
never know whether these are all irrational numbers or we are still missing some. We
will never know if we have filled in all the holes this way.8

In order to make sure we fill in all the holes, we are going to take a more radical
approach: we will forego giving explicit expressions for each number separately, and
instead we will say that the real numbers are all possible cuts in Q, whether we can come
up with an explicit expression for them or not. That is:

Definition 3. A real number is a cut in Q.

We denote by R the set of all real numbers (cuts in Q). A drawback of this definition
is that it doesn’t give us a good overview of what numbers we have just created. We will
remedy this by studying our creation. This is very common in mathematics: first define
something, then study the properties that it has. For example, recall when you had first
defined the derivative at x0 as f ′(x0) = lim

x→x0

f(x)−f(x0)
x−x0

. You didn’t know at the time

that the derivative would obey rules like the product rule; you deduced such properties
afterwards.

Our goal below is to show that the set of real numbers thus defined has all the nice
properties that we want it to have. We are not going to do this in detail, but we will
sketch the ideas.

7Note that with cubic roots we may write simply x3 < 5 instead of “x < 0 or x3 < 5”; all negatives
have the property that x3 < 5, hence they are included in this expression.

8It turns out that it is impossible to give an explicit expression for every real number. This is another
expedition best left for another day.
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Figure 5: Intuitively, a real number (cut) y = C|D is larger than or equal to the real
number x = A|B if y “cuts” relatively to the right compared to x. This can be rigorously
expressed by saying A ⊂ C.

Is this Ithaka?

We have defined R in a way that made sense, but does the set thus defined have the
properties that we anticipate? Let’s look at those properties one by one.

R contains Q

A basic property that the real numbers must satisfy is that they extend Q, i.e. that Q is
their subset. However, the definition that we have given makes the real numbers things
of a different nature. They are not just numbers like the rationals are; they are pairs
of sets (cuts). In this sense, Q is not a subset of the newly defined R. But as we have
already seen, each member of Q can be identified with a corresponding member of R in a
very straightforward way: the number q ∈ Q can be identified with the cut Aq|Bq where
Aq = {x ∈ Q : x < q} and Bq = {x ∈ Q : x ≥ q}, i.e. “the cut at q”. The cut Aq|Bq

belongs to R, so, in this sense, the elements of Q can also be thought of as elements of
R, making Q essentially a subset of R. We will use the notation q∗ to denote the cut
(member of R) that corresponds to the rational number q. We emphasize that while q is
a member of Q (q ∈ Q), q∗ is a member of R (q∗ ∈ R).

R is a totally ordered set

Another important property that this newly created R must satisfy is to be a totally
ordered set. Otherwise, it would be impossible to picture it as a “line” of numbers.
Although we have defined what the members of R are, we haven’t specified how to order
them. But it is easy to do so. The intuition is the following: Since any real number is a
“cut” at a certain point of the real line, we say that y is larger than x if y “cuts” at a
point relatively to the right of x. To make this rigorous, note that if y cuts further to the
right, then the A-part of x will be a subset of the A-part of y. See fig. 5. We thus define:

Definition 4. For any real numbers x = A|B and y = C|D, we say that x is less than
or equal to y (x ≤ y) if A ⊂ C.9

Note how the above definition of “x ≤ y” makes use of the definition of x and y as cuts
(pairs of subsets) and avoids any reference to geometric notions, such as “x lies to the left

9Here and in the rest of this article we use the symbol ⊂ to mean “subset or equal” (some authors
use ⊆ instead). If we want to say that a set is a proper subset of another set (i.e. certainly not equal),
we may write ⊊.
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of y”. It is not hard to check that this definition satisfies all standard properties of a total
order, which we are not going to list here.10 One property worth noting, however, is the
fact that when comparing two numbers of the form p∗ and q∗ (i.e. two real numbers that
represent rationals), then this order relation coincides with the standard order relation
in Q, i.e. p∗ < q∗ if and only if p < q.

Arithmetic operations

How do you add two cuts A|B and C|D? If we want to call these cuts “real numbers”,
we’d better find a way to add them!

To start with something easy, let’s say we want to add the numbers 3∗ and 4∗, which
are the members of R that we identify with the rationals 3 and 4, respectively. Clearly,
the result of adding them must be 7∗, i.e. (3+4)∗. But we are not going to simply define
it to be (3 + 4)∗; this method would only work when adding real numbers that represent
rationals. We want to get this result in a way that also works for real numbers that do
not have rational counterparts.

Let us consider the A-parts of these numbers: the A-part of 3∗ is A3 = {x ∈ Q : x <
3}, that of 4∗ is A4 = {x ∈ Q : x < 4}, and that of 7∗ is A7 = {x ∈ Q : x < 7}. How
does A7 relate to A3 and A4? Simple: A7 contains all those numbers that one can get by
adding a number in A3 and a number in A4. That is,

A7 = {s+ t : s ∈ A3, t ∈ A4}. (2)

The right-hand side can be read as “the set of all those numbers that can be obtained by
adding two numbers s and t, where s is any member of A3 and t is any member of A4”.
Let’s verify that this set contains exactly the same elements as A7. First observe that
if s is less than 3 and t is less than 4, then their sum must be less than 7. Hence, any
member of this set is contained in A7. Conversely, any number that is less than 7 can
be written as a sum of two numbers, the first of which is less than 3 and the second less
than 4 (for example, 6.99 = 2.995 + 3.995). This makes sure that every element of A7 is
also contained in the set on the right-hand side of the above equation. We conclude that
these two sets contain exactly the same elements, i.e. eq. (2) holds.

Although when adding 3∗ + 4∗ we already knew the result that we were looking for,
the above discussion suggests a general definition that can work for all real numbers:

Definition 5. The sum x + y of two real numbers x = A|B and y = C|D is the real
number z = E|F , where

E = {s+ t : s ∈ A, t ∈ C} and

F = all the rest of Q.
(3)

It is important to note that the addition s + t appearing in the definition of E is an
addition of rational numbers, since A and C are subsets of Q. Hence our definition is
not a circular one; we make use of addition of rationals in order to define addition of real
numbers.

10Let us give an example of how one could prove those properties: Is it true that x ≤ y and y ≤ z
implies x ≤ z? Yes. Write x = A|B, y = C|D, and z = E|F . The first two inequalities mean that A ⊂ C
and C ⊂ E, respectively. We can thus deduce that A ⊂ E, which by definition means that x ≤ z and
this completes the proof.
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Let’s look at an example. What is 3
√
5 + 3

√
7? Recall that 3

√
5 is a real number whose

A-part is {x ∈ Q : x3 < 5} and 3
√
7 is a real number whose A-part is {x ∈ Q : x3 < 7}.

Therefore, according to the above definition, 3
√
5 + 3

√
7 is a real number whose A-part is

the set of all numbers that can be obtained by adding any two rationals s and t that
satisfy s3 < 5 and t3 < 7.

One can define analogously other arithmetic operations. The idea is always that one
uses the corresponding operations of Q and the definition of real numbers as cuts in Q
in order to define the arithmetic operations in R. The operations thus defined satisfy
all standard properties, such as transitivity and commutativity (for addition and multi-
plication), distributivity of multiplication over addition, etc. Moreover, these operations
behave as they should with respect to the total order that we have defined earlier, i.e.
if x > y and a > 0∗, then a · x > a · y. Finally, when the newly defined arithmetic
operations are applied to members of R that represent rationals, they coincide with the
corresponding operations on rationals, i.e. p∗ · q∗ = (p · q)∗.

R doesn’t leave gaps

We created the real numbers by considering all cuts in Q. This way R included all
members of Q, but also all gaps left by Q on the number line. As such, the real numbers
shouldn’t leave any gaps, right? But what if instead of cuts in Q we consider cuts in R?
What if, by introducing the real numbers, we have changed the number line, making it
more dense and introducing new points that are not covered?

To make the above precise, the question is: does R leave gaps, according to defini-
tion 2? In other words, is it possible to find two subsets U and V of R, such that they
satisfy the five properties of a cut in R and additionally V has no smallest element?

The answer is no, but this will have to wait until our next journey to be shown. There
is only so much one can do in a trip! In that second journey we are going to talk about
another very important property of R, which is the least upper bound property. It will
then easily follow from the least upper bound property that R doesn’t leave gaps. Of
course, the destination will only be the end; we will make sure to enjoy that journey as
well!
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Appendix: Proof that
√
2 is not a rational number

The need to define a larger set of numbers than the rationals arose from the fact that
there are quantities that come up naturally in mathematics which cannot be expressed as
ratios of integers. But how do we know that a number like

√
2 or π cannot be expressed
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as a ratio of integers? Although today we are told so in school, this is not at all obvious.
The first number to be shown not to be rational was probably

√
2, and the proof dates

back at least to the Ancient Greeks. Here we give a modern proof that relies on simple
algebraic manipulations and some straightforward facts about odd and even numbers.

Theorem 6. There is no rational number whose square is equal to 2.

Proof. Suppose that there is a rational number, i.e. a fraction with integer numerator and
denominator, whose square equals 2. As a first step, we simplify this fraction. Specifically,
if both numerator and denominator are even numbers, then we divide both by 2. We
repeat this until at least one of them is not even, so we cannot simplify further in this
way (specifically by dividing by 2). We end up with a fraction, say a

b
, where either a or

b is an odd number.
Because the above process does not change the value of the fraction, we have that(

a
b

)2
= 2, or equivalently a2 = 2b2. Now, the fact that a2 is twice another integer (b2)

means that it is necessarily even. But only even numbers can have even squares, hence a
is itself even.

Now rewrite the equation a2 = 2b2 as

2 ·
(a
2

)2

= b2. (4)

Given that a is even, a/2 is integer, hence the left hand side is twice an integer
quantity, i.e. an even number. Because this is equal to b2, it implies that b is also an
even number. This contradicts the fact that not both a and b can be even numbers at
the same time.
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